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Abstract—Quasi-optical power-combining techniques have amplifiers on-chip eventually becomes impractical, as it results
been developed to address fundamental limitations in solid-state jn most of the semiconductor area being devoted to the pas-
devices and circuits. These techniques have been applied 10gyye matching and combining circuitry; furthermore, losses in

oscillators, amplifiers, frequency-conversion components, and . T . ! .
control circuits. This paper surveys progress in the development the semiconductor transmission lines are relatively high, leading

of quasi-optical array systems operating in the microwave and to a reduction in Combining efﬁCiency. These factors are dis-
millimeter-wave regime, focusing primarily on the progress in cussed in [12] to quantify limits on combining efficiency. In

power amplifiers. order to realize solid-state components with higher power and
Index Terms—Active arrays, amplifiers, power combining, €fficiency, combining techniques must be used that can inte-
quasi-optics, spatial power combining. grate large numbers of devices with minimal signal distribution

and combining losses, while maintaining desired amplitude and
phase relationships. Spatial or quasi-optical techniques provide
a possible solution.
S THE operating frequency of semiconductor solid-state Spatial or quasi-optical power combining provides enhanced
devices increases well into the millimeter-wave region, ttRF efficiency by coupling the active components to large-di-
size of the devices and, hence, their power-handling capabiligmeter guided beams or waveguide modes, rather than the
are reduced. In order to exploit the advantages of a solid-stptenar transmission lines used in circuit-combining structures.
technology for high power levels at millimeter-wave frequerdsing a large beam cross section allows many devices to be
cies, multiple solid-state components must be combined. integrated in a single stage of combining. Since all of the ele-
Techniques for device- and circuit-level combining are extements are operating in parallel, the loss is roughly independent
sively reviewed in [1]-[3]. Single-chip monolithic microwaveof the number of amplifiers. Ohmic losses in these systems
integrated circuit (MMIC) amplifiers typically combine theare minimal since the energy is distributed and combined in
outputs of the transistors directly in parallel or with corpoair via low-loss waveguides or Gaussian beams. Most of the
rate binary Wilkinson power combiners. A survey of curreribsses in these systems are associated with coupling from the
state-of-the-art is impressive: researchers at TRW have reporéetve devices to the propagating beam and/or coupling to a
427 mW at 95 GHz from a single-chip amplifier [4], and hav@ower collection port, both of which can be minimized through
achieved 1 W at 62 GHz [5] with a two-channel amplifiecareful design.
and an off-chip combining network. Commercially available Note that the terms “spatial” and “quasi-optical” are often
single-chip amplifiers include the TriQuint [6], Raytheon [7]used interchangeably. To further confuse the issue, some of
and Sanders [8] 2-WK a-band amplifiers. Higher power levelsthe reported systems closely resemble ordinary antenna arrays,
can be achieved using multichip modules with off-chip mier are housed in closed metallic waveguide. Though there is
crostrip or waveguide combining networks, with the associated formal definition, the term quasi-optical is usually under-
drawback of increased assembly. Researchers at TRW hgusod to mean an electronic system that employs high-order
reported a 2.4-WW-band amplifier by combining eight chipsbeam-guiding components (e.g., Gaussian beams defined
in a waveguide structure [9]; a group at Northrop Grummay lenses and/or shaped mirrors) for signal distribution and
reported a 1-WI¥-band module combining 16 chips [10].collection. It could be argued that any antenna array, partic-
At Ka-band, researchers from Motorola have reported aar if feeding a large lens or shaped reflector is, therefore,
eight-way module that generates 31 W [11]. quasi-optical. A useful distinction is that classical antenna
These results approach fundamental limits in device powatfrays or spatial combiners use circuit-based feed networks to
density and combining efficiency. Combining large numbers @dsure mutual coherence between the array elements, whereas
quasi-optical systems employ “optical” methods for this
Manuscri , _ purpose. However, since many of the so-called quasi-optical
pt received May 22, 2001. This work was supportgd by the Ar é/ . . .
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M. P. DeLisio is with Wavestream Wireless Technologies, West Covina, Cih is probably best to consider the term “quasi-optical” as

I. INTRODUCTION AND MOTIVATION

21791 USA. _ o indicative of a qualitative methodology based on multidimen-
R. A. York is with the Electrical and Computer Engineering Department, Uni-. | . . d diff : hat is disti f

versity of California at Santa Barbara, Santa Barbara CA 93106 USA.  Slonal wave Interference and diffraction that Is distinct from
Publisher Item Identifier S 0018-9480(02)01959-2. one-dimensional lumped-circuit or transmission-line systems.

0018-9480/02$17.00 © 2002 IEEE



930 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 3, MARCH 2002

100 ——rrrm—
: 4
4
[ Ideall' zQzaBs.l':opﬁ|
0ss
- ‘ ] T
s
4
. Binary -
1 , 0.2 dB per ¥4
2,
@

Normalized Power

T ——
L _ \\‘:s
T————
1 10 100 1000
Number of Elements
(@
b
Feed Network Combining Network 3\ \ \ ®)
\\ \ &\ A Fig. 2. (a) Tile and (b) tray amplifiers.
3
I"p“‘(___  Output lnput‘é § % i \Output
// ; '5 g [12]. These properties allow an increased dynamic range in
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Fig. 1. (a) Output power available from (b) corporate and (c) quasi—optichStemS' " . . .

power combiners as a function of the number of elements [13]. The binary The traditional drawbacks to quasl-optics have been insuf-
power-combining curve was generated assuming eight elements canfigéent modeling, difficult packaging issues, the excitation of
arranged in a one-wavelength distance and each quarter-wave sectiorgl%)strate modes, and thermal management. Recent advances
transmission line has 0.2-dB loss; the quasi-optical curve was generafel ! . .
assuming a 2-dB total loss. These numbers are typical for on-chip micros filve addressed many of these drawbacks, enab“ng quasi-op-

combiners and quasi-optical combinergit-band. tical power combining as a viable technology.

The advantages of spatial combining are manifest for large IIl. RETROSPECTIVE

numbers of devices. For example, to combine the outputs ofAn early demonstration of the strong potential for antenna-
512 devices would normally require nine stages of binary cibased power combiners was by Stainaral. [20], who con-
cuit combining, but can be (and has been) implemented usiggucted a 100-W 100-element amplifier array at 410 MHz. Each
a single quasi-optical surface. Fig. 1 illustrates this point. Noggnplifier fed a dipole antenna above a ground plane, with the
that the physical layout of the corporate combiners with marjipoles interconnected and closely spaced. This approach has
elements causes the transmission lines in the last stages of calge been employed at millimeter-wave frequencies with some
bining to become very long. As the number of devices increaseaccess. Durkin [21] describes a 35-GHz “active aperture” using
the losses in these lines become insurmountable. The outpuPATT amplifiers driving a printed slot array. Chareg al.
power of a quasi-optical combiner, on the other hand, will cof22] also reported d a-band array using GaAs MMIC ampli-
tinue to grow in direct proportion to the number of devices confiers and tapered-slot antennas in a tray approach. Mink [23]
bined. In this example, the quasi-optical combiner is superipfoposed a quasi-optical combining technique using an array of
when there are more than 32 elements. The quasi-optical adgative resistance devices in a semiconfocal resonant cavity. A
vantage becomes more apparent at higher frequencies, whatge complete summary of historical work in this area is given
the shorter wavelengths allow denser device integration. For éx{24]-[26].
ample, quasi-optical multipliers at 1 THz have generated output
powers 200 times greater than any competing technology, aclear ||, A RcHITECTURES PACKAGING, AND MODELING
testament to this high-frequency advantage [14]. Furthermore, )
millimeter-wave quasi-optical transmitters could be inexpedt Crids, Tiles, and Arrays
sively mass produced by taking advantage of monolithic inte-The various quasi-optical architectures that have been
gration. reported can be classified as either a “tray” or a “tile” approach,
Several other advantages of quasi-optical amplifiers haas in Fig. 2. In the tile approach, the array couples to a wave
been noted. Since noise from the individual devices is largglyopagating normal to the surface, whereas the beam propa-
uncorrelated, the broad-band noise figure of quasi-optical cgation is tangential to the planar surface in a tray system. The
cuits tends to be similar to that of a single device [15]-[17]; faile approach lends itself to single-chip monolithic integration,
similar reasons, the excess phase noise power in quasi-optinl requires small-area unit cells that typically incorporate
systems decreases in proportion to the number of elemer@sonant antennas with limited bandwidth. The tray geometry
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Fig. 3. Two tile architectures. (a) Grid amplifiers. (b) Active array amplifiersti9- 4. (a) Lens-focused quasi-optical system. The focusing will cause a
nonuniform power distribution at the plane of the amplifier. (b) Planar lens
amplifier [28], [29]. The amplifier works as a planar Rotman lens, with

lends itself to broad-band traveling-wave antennas and simpl@nsmission-line delays providing the proper phase shift.

heat-removal, but at the expense of extra integration complexity.

Of the tile approaches, two distinct architectures have

emerged: the so-called “grid” amplifier, and the active array

amplifier. These approaches, illustrated in Fig. 3, are quite nput

different, and each has its merits. The grid amplifier is an array Waveguide

of closely spaced differential transistor pairs. The input and
outputs are cross polarized, and off-chip polarizers are used
for tuning. The drawback of grids is that the small cell sizes
limit the gain and power per cell to that available from a single
differential pair. Since the active devices are very dense, how-
ever, the grid amplifier can be monolithically fabricated; this @
makes grids a very attractive technology for moderate gain and

power applications that demand a single-chip mass-producib

solution. Active arrays, on the other hand, use larger unit cell ‘h =

with more conventional antennas like patches or slots. Thi & = = =&

larger unit cell allows integration of multistage MMICs with =~
higher gain and output power. By integrating the amplifiers in
the longitudinal direction, tray amplifiers share this advantage

The passive radiating and tuning elements do tend to occuy

a significant fraction of the active array and tray amplifier's

area; the most economical solution is to attach active MMICs

to passive antennas. Active arrays and trays may find useFig 5. (a) Quasi-optical amplifierin a waveguide fixture. Smaller arrays could
_hi ; At be putinto a single-mode waveguide; larger arrays must be putinto an oversized
very hlgh power or gain appllcat|ons. structure, possibly with sidewall loading to insure a flat field. (b) Rockwell array

amplifier in a tapered waveguide fixture [35].
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B. Packaging

Efficient feeding of the input of a quasi-optical amplifier isbe ideal. For other applications, such as a drop-in replacement
another important issue. An ideal feed would transition fromfar a traditional power amplifier (PA), the radiated quasi-op-
standard guided wave to a plane wave with uniform amplitudieal output must be efficiently collected and transitioned back
and phase, efficiently illuminating the aperture of the quasi-ops a guided wave. Quasi-optical packaging fixtures have evolved
tical array. Uniform illumination is important for two reasonssteadily. The first quasi-optical amplifiers were measured in the
it gives a well-formed radiated output beam, and it insures tHar field of two horn antennas. Although this approach is useful
all the array elements saturate together. To preserve gain &dcharacterizing amplifiers in the laboratory, the very high
noise figure, this transition must be made with as little loss @sith losses between the array and horns render this approach
possible. For some applications, the radiated output beam menusable for any practical application. Quasi-optical amplifiers
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Fig. 6. Spatial combiner developed by Sanders [44].

have also been tested using dielectric lenses to capture morklodeling of grid structures is most challenging since the ele-
of the power radiated from the input and output horns [15fents are very strongly coupled and generally placed quite close
[27], as shown in Fig. 4(a), but this configuration is very bulkytogether(0.1-0.31). Due to the strong interactions, modeling
Popovicand others at the University of Colorado at Bouldegvery element in large arrays can be a computationally daunting
have developed a planar lens amplifier that focuses the powesk. Steer and co-workers at North Carolina State University,
by incorporating appropriate phase delays across a planar acRateigh, have achieved some success at analyzing the entire
array [28], [29]; this approach is illustrated in Fig. 4(b). Pergrid [37], [38]. Instead of modeling the entire grid, it is often
haps the most attractive solution is to include the amplifier inraore convenient to picture an infinite two-dimensional lattice,
guided-wave system, as shown in Fig. 5(a). York and others hared then take advantage of symmetry planes where the tangen-
demonstrated good results by incorporating tray amplifiers intial fields vanish to define a single unit cell. This approach ne-
a single-modeX -band waveguide [30], [31] and a broad-bandlects edge effects and will be most valid for large arrays. The
coaxial waveguide [32]. Larger grids and arrays must be putintomplexity of the modeling is reduced substantially: from an-
an overmoded guide, and care must be taken to insure thataheing the entire array to analyzing a single cell in an equiv-
arrays are illuminated uniformly without sacrificing too muctalent waveguide. The unit cell approach was originally devel-
power to higher order modes. Mortazawi and others have haged to model grid oscillators [39] and was later extended to
considerable success using dielectric-loaded “hard horns” to gxid amplifiers [16]. Recent advances in commercially avail-
cite array amplifiers with a near-uniform field [33], [34]. Re-able computer-aided design (CAD) packages have enabled de-
searchers at Rockwell International have reported up to 9-@8jners to model grids with remarkable success [40]. Similar
small-signal gain and 1 W of saturated power from the flangesit-cell-based methods can be used to model the stability of
of a K'a-band monolithic array amplifier in a flared-waveguideyrid amplifiers [41]. Furthermore, a careful choice of the cell
fixture [35]; this fixture is shown in Fig. 5(b). Researchers at thgize can minimize the deleterious effects of substrate modes
California Institute of Technology, Pasadena, have also shoyi2].
promising results in developing a waveguide-based mode conModeling of active array amplifiers is more akin to classical
verter for feeding grid amplifiers [36]. antenna array design. Although still challenging, there is amuch
larger knowledge base for this type of structure and, hence, nu-
merous existing modeling codes can be used. These arrays use
common planar antenna structures (slots, patches) that can be
The inputs and outputs of a quasi-optical component are emalyzed in a unit-cell configuration with appropriate boundary
diated waves. The designer of a quasi-optical array must modehditions (simulating the response in large arrays) to account
how the electric and magnetic fields in the radiated waves wibr mutual coupling effects. Some successful efforts in global
couple to the voltages and currents on the terminals of the actimedeling of the entire array, including edge effects, has been
device. Although accurate modeling is still a challenge todagported in [43] for a combiner based on folded-slot antennas.
researchers have made significant progress in modeling the 8&ace mutual coupling is a smaller effect in these arrays in com-
havior of quasi-optical arrays. parison to grids, often a design can be carried out using isolated

C. Modeling
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antenna impedances. However, most existing antenna models
assume that the radiation takes place in an unbounded medium.
This condition is violated for arrays operated in metallic enclo-
sures, and this can have a strong influence on the driving-point
impedances.

IV. CURRENT STATE-OF-THE-ART

mﬁ;r et oAl

Significant progress has been made in the laboratory devel-
opment of solid-state spatial power combining. The results are

too numerous to discuss exhaustively here. The following four /;;’" B ;3 A
demonstrations have been chosen to highlight some of the many / !
promising results in each of the key design architectures. /_/; Mﬁ/,ff L
A. Sanders 35-W 60-GHz Tray Amplifier {w 7@ 7
Arguably the most stunning accomplishment in spatial com- L _
biners was recently reported by researchers at Sanders [44], who ‘i s
described a combiner with 272 MMICs in operation simulta- L g
neously. This system is depicted in Fig. 6. This system uses o o
a sectoral horn feed to a 17-element linear dipole array. Each 7S
dipole then couples energy to a tray containing 16 three-stage )

MMIC output amplifiers with 20 driver MMICs (one for each
PA plus four additional pre-amps in the distribution network).
The output signal from the 1% 16 output dipole array network

is collected using a pyramidal horn. This array reportedly gen-
erates 35-W continuous wave (CW) output power at 61 GHz,
with 60 dB of small-signal gain and a 4-GHz bandwidth. The
AM—-PM distortion is /dB. This combiner achieves an esti-
mated 45%-50% collection efficiency. The extremely high gain
of this system compares favorably with tube sources. We believe
that this is the highest power solid-st&feband source reported
to date.

B. UCSB 120-WX -Band Tray Amplifier

Researchers at the University of California at Santa Barbara

(UCSB) have successfully implemented a spatial power com- (©)
biner in a “tray” architecture [30], [31], as shown in Fig. 7. Thesig. 7. UCSB X-band tray amplifier [30], [31]. (a) Individual tray
tray approach permits the use of broad-band traveling-wave ahewing finline or tapered-slot transitions and MMICs, along with microstrip

: - : : g jnterconnects. (b) Assembled system with end-caps, forming input and output
t_ennas [45] and _|mpr_oved functlonall_ty through circuit mt_egr aveguide apertures. (c) Photograph of the complete system using six trays
tion along the direction of propagation. Each tray consists @fir MmICs each.
a number of tapered-slotline or finline transitions that couple

energy to and from a rectangular waveguide aperture to a set

of MMIC amplifiers. The finline transitions rest over a notched®Wer levels and broad-band performance, along with the su-

opening in the metal carrier to which the MMIC are attacheé?.erb graceful degradation characteristics, make this topology an

When the trays are stacked vertically, as shown in Fig. 7(b), tﬁgractive alternative to low-power vacuum-tube sources such as
notched carriers form a rectangular waveguide aperture poﬁwprowave power modules (MPMs).
lated with the finline transitions. The use of the waveguide mode ) ] ) )
to distribute and collect energy to and from the set of ampfiz: Lockheed Martin/North Carolina State University 25-W
fiers avoids loss mechanisms that would otherwise limit the e4-GHZ Array Amplifier
ficiency in large corporate combiner structures. Researchers at Lockheed Martin and North Carolina State
An X-band module with 6-8 trays, each containing four 5-Wniversity have recently demonstrated a planar “tiled” com-
GaAs MMIC amplifiers [see Fig. 7(c)], was assembled ontolginer system ak «-band (34 GHz) [46], [47]. This system uses
19-in rack-mounted assembly with a fan-cooled base plate or45-element double-sided active patch antenna array with a
thermal management. A maximum power of 150-W CW wasard-horn feed. The array, unit cells, and assembled combiner
measured at 8 GHz, with an 8-V bias and total bias current ®fstem are shown in Fig. 8. In this case, the input is coupled to
approximately 60 A. The measured graceful degradation chére array through a waveguide port on the hard-horn feed, and
acteristics for a similar 24-MMIC (six-tray) configuration showthe output power is radiated directly into space. This arrange-
good qualitative agreement with the theory in [19]. The higiment would find use as a feed structure for a large reflector an-
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Fig. 8. Lockheed-Martin/North Carolina State University 45-element array producing 25RM dtand [46], [47].

tenna or lens-focused system. The hard-horn feed utilizes di-
electric sidewall loading to create a uniform field profile [33],
[34], thus insuring equal drive power to the array elements. The
MMIC amplifiers rest directly on a thick central ground plane
through which the signal is coupled via integrated coaxial vias.
This thick ground provides good input/output isolation, and al-
lows for excellent thermal management. This particular system
included a liquid-cooled baseplate.

Based on measurements of the radiation pattern and effective
isotropic radiated power (EIRP) of the array, a radiated power of
44 dBm (25 W) was recorded at 34 GHz, with a 3-dB bandwidth
of 800 MHz. The array has a small-signal gain of 10 dB at this
frequency, and the power measurements were made at 3-dB gain
compression

D. California Institute of Technology 5-W 37-GHz Grid (@
Amplifier

Researchers at the California Institute of Technology have
developed a single-chip monolithic grid amplifier using
Rockwell pseudomorphic high electron-mobility transistor
(PHEMT) technology [27]. Fig. 9(a) shows a section of the
grid; the entire array incorporates 512 transistors in an area
1 cm on a side. The grid was characterized in a lens-focused
system. The maximum small-signal gain is 8 dB witha 1.3 GHz
(3.5%) 3-dB bandwidth. The power and gain saturation curves
are shown in Fig. 9(b). Under 3-dB gain compression, the CW
output power is 5 W with a power-added efficiency of 17%.
The measured output third-order intercept power is 31 W, ,
and the AM—PM conversion is°2iB. An aluminum-nitride T T T e 1l
ceramic heat spreader was used for thermal management. Mea- Input powe‘r’ dBm
surements with an infrared camera show that the temperature
at the surface of the grid is only 5%, with 60°C hot spots, (b)
proving that earlier fears of destructive temperature rises were _ _ . o _ __

(a) Section of a 512-transistor monolithic quasi-optical grid amplifier

.. . . Fig. 9.
unfounded. .'I.'hese results are competitive with any smgle—crwg]_ The grid unit cell period is 62&m. (b) Large-signal gain and power
MMIC amplifier. saturation. At 5-W output, the estimated system loss is 2 dB.

32 €— —" -6

Output Power, dBm
Gain, dB
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V. CONCLUSIONS [21]

Quasi-optical or spatial-combining techniques have been suc-

culminating in several promising demonstrations at microwave
and millimeter-wave frequencies. As demand for bandwidth in-
creases and communications systems continue to exploit high@?’]
frequencies, these techniques are likely to play a key role in fu-

ture communications electronics.
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